孔明

发布者:杨光发布时间:2020-03-03浏览次数:4685

 

孔明,博士,教授,硕士生导师

邮箱:kongming@ouc.edu.cn

电话:0532-82031879


一、学习与工作经历


2001.09-2005.07

中国海洋大学海洋生命学院 生物科学

学士

2005.09-2008.07

中国海洋大学海洋生命学院 海洋生物学

硕士

2009.03-2011.07

Korea University, Biotechnology

博士

2017.01-2018.01

哈佛医学院 布里根妇女医院

访问学者

2011.07-至今

中国海洋大学海洋生命学院

讲师、副教授、教授


二、主要研究方向

从事天然生物医用材料的研究,主要研究方向包括,生物医用材料功能化制备、纳米载药递药技术、微针经皮给药技术、免疫调控与肿瘤治疗、生物力学与组织工程等。围绕以上研究,近年来先后主持/参加国家自然科学基金、国际科技合作重点项目计划等国家级、省部、市级课题15项,其中9项为课题负责人。发表学术论文70余篇,其中第一作者/通讯作者发表SCI论文28篇,总被引3751次,h-index 26;申请专利10余项,第一发明人授权2项;曾获中国医药城113医药人才特别计划高层次人才称号,第五届中国(泰州)国际医药高层次人才双创大赛 生物医药类 三等奖,江苏省留学回国人员创新创业计划 B类资助等奖项。

三、教学工作

承担本科生课程《蛋白质化学与蛋白质组学》、《海洋生物功能材料》,参与《海洋生物技术》课程讲授;参与研究生《生物材料与组织工程》课程讲授;作为主要完成人(3/5)曾获中国海洋大学首届研究生教育成果二等奖(2019),作为指导教师(2/2),曾获“创青春”青岛银行山东省大学生创业项目银奖(2014)等。

四、社会兼职

担任中国生物材料学会会员、青岛市甲壳质研究会理事、国家自然科学基金函评专家、  Journal of Controlled Release, ACS Applied Materials & Interfaces, Nanomedicine, Carbohydrate Polymers, Journal of Materials Chemistry B, International Journal of Biological Macromolecules, Food Bioscience等十余种国际学术期刊审稿人。

五、科研项目:

1. 生物可吸收微针贴工艺研究开发,20180270,科技开发与协作,17万,2018.09-2020.12,主持

2. 肿瘤引流淋巴结靶向纳米复合自溶微针疫苗的构建及其调控免疫抑制微环境的抗肿瘤效应研究,31670972,国家自然科学基金,62万,2017.01-2020.12,主持

3. 传递体纳米粒复合体的透皮性及抗乳腺癌作用,31240007,国家自然科学基金,15万,2013.01-2013.12,主持

4. 淋巴血液多靶点纳米药物复合体系的构建及其时序响应性递药的调控研究,31300786,国家自然科学基金,20万,2014.01-2016.12,主持

5. 肿瘤靶向纳米载药体系的透皮性及抗乳腺癌作用,BS2012SW024,山东省优秀中青年科学金奖励基金,8万,2012.07-2014.12,主持

6. 新型多功能传递体经皮给药系统的构建与抗乳腺癌作用,20120132120011,教育部新教师基金,4万,2013.01-2015.12,主持

7. 肿瘤治疗中经皮给药的新型纳米靶向载体的研究,教外司留[2013]693号,留学归国人员科研启动金,3万,2013.06-2015.12,主持

8. 淋巴血液多靶点纳米药物时序响应性递药的调控研究,2013M541961,中国博士后基金,5万,2013.09-2015.08,主持

9. 多靶点纳米药物递药的时序响应性调控研究,14-2-4-98-jch,青岛市科技发展计划,5万,2014.09-2016.08,主持

10. 医用甲壳素纤维生物材料联合开发,2012DFB50140 ,国际科技合作重点项目计划,10万,2012.05-2014.10,参与

11. 海洋生物纳米材料载药与传输系统的研究,2013DFG32880,国际科技合作重点项目计划,10万,2013.04-2016.03,参与

12. 硅藻生物矿化硅的促凝血活性及应用基础研究,ZR2019QD005,山东省自然科学基金,参与

13. 沙蚕功效成分研究及特医配方食品研发,2016YYSP014,山东省科技攻关,参与

14. “海洋药物与生物制品”研究,U1406402-5,国家自然科学基金 NSFC-山东联合资助海洋研究中心,参与

15. 经济褐藻新资源开发、养护和高值化利用关键技术研究与应用,2015418022,国家海洋局公益性行业科研专项,参与

六、代表性论著

以第一或通讯作者发表学术论文如下:

  1. Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle. Nano Research, 2020, Accept.

  2. Thermo/Photo Dual-Crosslinking Chitosan-Gelatin Methacrylate Hydrogel with Controlled Shrinking Property for Contraction Fabrication. Carbohydrate Polymers, 2020, 116067.

  3. A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. Journal of Materials Chemistry B, 2019, 7 (31), 4854-4866.

  4. Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Advanced Healthcare Materials, Advanced Healthcare Materials, 8(3), 1801146.

  5. Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. International journal of biological macromolecules, 2019, 125, 9-16.

  6. The temperature-responsive hydroxybutyl chitosan hydrogels with polydopamine coating for cell sheet transplantation. International journal of biological macromolecules, 2018, 120, 152-158

  7. The Novel Medical Thermoresponsive Hydrogel Derived from Chitosan. Current Organic Chemistry, 2018, 22(7), 620-627.

  8. A multi-responsive biomimetic nano-complex platform for enhanced gene delivery. Journal of Materials Chemistry B, 2018, 6(37), 5910-5921.

  9. Simply constructed chitosan nanocarriers with precise spatiotemporal control for efficient intracellular drug delivery. Carbohydrate Polymers, 2017, 169, 341-350.

  10. Surface charge triggered intestinal epithelial tight junction opening based on chitosan nanoparticles for insulin oral delivery. Journal of Controlled Release, 2017, 259, e94.

  11. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydrate polymers, 2017, 157, 596-602.

  12. Systematic investigation of fabrication conditions of nanocarrier based on carboxymethyl chitosan for sustained release of insulin. International Journal of Biological Macromolecules, 2017, 102, 468-474.

  13. Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. International Journal of Biological Macromolecules, 2017, 104,157-164.

  14. Investigation of gelling behavior of thiolated chitosan in alkalinecondition and its application in stent coating. Carbohydrate Polymers, 2016, 136, 307–315. SCI

  15. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersome for tumor metastasis therapy. Journal of Controlled Release, 2015, 213, E77-77. Meeting abstract. SCI

  16. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chemical Communication, 2015, 51, 1453-1456. SCI

  17. Transdermal delivery of 10,11-methylenedioxycamptothecin byhyaluronic acid based nanoemulsion for inhibition of keloid fibroblast. Carbohydrate Polymers, 2014, 112, 376386. SCI

  18. Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 197–207. SCI

  19. 壳聚糖温敏水凝胶的质-构关系及研究进展. 功能材料, 2014, 8(45), 08007-08012.EI

  20. Spatial-temporal event adaptive characteristics of nanocarrier drugdelivery in cancer therapy. Journal of Controlled Release, 2013, 172, 281-291. SCI

  21. 经皮给药中纳米制剂与皮肤的质构效关系. 生物化学与生物物理进展, 2013, 40(10):1-9. SCI

  22. Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydrate Polymers, 2013, 94, 634-641. SCI

  23. Investigations on Skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydrate Polymers, 2011, 86, 837-843. SCI

  24. Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydrate Polymers, 2011, 83(3), 1303-1310. SCI

  25. Antimicrobial properties of chitosan and mode of action: a state of the art Review. International Journal of Food microbiology, 2010, 144(1), 51-63. SCI

  26. Design and investigation of nanoemulsified carrier based on amphiphile-modified hyaluronic acid. Carbohydrate Polymers, 2011, 83(2), 462-469. SCI

  27. Antibacterial mechanism of chitosan microshperes in a solid dispersing system against E. coli. Colloids and Surfaces B: Biointerfaces, 2008, 65(2), 197-202. SCI

  28. Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Frontiers of Materials Science, 2008, 2(2), 214-220. SCI